
Power Backpack for Energy Harvesting and
Reduced Load Impact
Ze Yang,⊥ Yiyong Yang,⊥ Fan Liu, Zhaozheng Wang, Yinbo Li, Jiahao Qiu, Xuan Xiao, Zhiwei Li,
Yijia Lu, Linhong Ji, Zhong Lin Wang,* and Jia Cheng*

Cite This: https://dx.doi.org/10.1021/acsnano.0c07498 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Long-distance walking with heavy loads is often
needed when going hiking or for field rescue, which is prone to
cumulative fatigue. There is also a great need for labor-saving
and biomechanical energy harvesting in daily life for extended
security and communication needs. Here, we report a load-
suspended backpack for harvesting the wasted energy of human
motion based on a triboelectric nanogenerator (TENG). Two
elastomers are incorporated into the backpack to decouple the
synchronous movement of the load and the human body, which
results in little or no extra accelerative force. With such a
design, through theoretical analysis and field experiments, the
backpack can realize a reduction of 28.75 % in the vertical
oscillation of the load and 21.08 % in the vertical force on the
wearer, respectively. Meanwhile, the mechanical-to-electric
energy conversion efficiency is modeled and calculated to be 14.02 % under normal walking conditions. The designed
backpack has the merits of labor-saving and shock absorption as well as electricity generation, which has the promising
potential to be a power source for small-scale wearable and portable electronics, GPS systems, and other self-powered health
care sensors.
KEYWORDS: backpack, triboelectric nanogenerator, labor-saving, shock absorption, energy harvesting

Backpacks are widely used in our daily life, giving
tremendous freedom to the hands and serving as a
great convenience for life and production.1−4 There are

many tough situations where walking or running with heavy
loads5 in a backpack is demanded, such as field training,
outdoor hiking, fire-fighting rescue, etc. It is of great necessity
and extreme importance to continuously provide electricity for
the increasingly used portable and wearable electronics and
sensors on people6−9 such as athletes, explorers, disaster
rescuers, etc., who work in wild or rural areas.
Moreover, considering the fact that batteries such as Li-ion

batteries have a limited lifetime and stored electricity,10,11

much effort has been devoted to seeking a sustainable,
renewable, and environmentally friendly complement to
establish self-powered systems.12−14 For instance, harvesting
energy from mechanical movements or vibrations in the
environment is a good choice.15−17 Meanwhile, human
motions such as walking, running, breathing, and heart and
pulse beating all have the potential to be energy sources.18−21

To effectively use the wasted mechanical energy of human
movements, many energy harvesters22−25 based on piezo-
electric,26−31 electromagnetic,32−35 and electrostatic induc-

tion36,37 effects have been recently developed to harvest
biomechanical energies from the foot strike, ankle, knee, elbow,
and hip.20,38 Among them, it is efficient and important to
generate electricity from the up and down movements of the
mass center of human body during walking or running.20

The triboelectric nanogenerator (TENG),39−42 as a method
of harvesting ambient energy, has been created and exploited.
It is based on the coupling of the electrostatic induction effect
and the triboelectrification effect.43−45 Since being created in
2012 by Wang et al.,46 it has witnessed rapid developments and
great achievements in the self-powered sensors,47−52 micro-
nano energies,23,53−55 blue-ocean energies,56−59 and high
voltage applications.60−64 The TENG has shown many
advantages in converting mechanical energy into electrical
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Figure 1. Structural and schematic photographs of the load-suspended backpack. (a) Schematic diagram of the whole backpack. Under the
unlocked condition, alternating currents generated can power some lower powered electronic products through a power management unit
(PMU). (b) Structural illustration of the backpack in the explosion state without presenting fasteners. (c) Schematic diagram of the TENG.
It adapts the IDT electrode and there are some grating rows on the movers. (d) Schematics of the four stages in an electric cycle, and the
reversal of electric polarity leads to an alternating current in the circuit.
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energy under a low-frequency environment, such as high
output power, high energy conversion efficiency, low cost, and
easy fabrication.29,65,66 In the literature, there are a few
applications of TENG to harvest the mechanical energy in a
backpack. Yang et al.67 developed a backpack embedded with a
rationally designed TENG with integrated rhombic gridding in
order to harvest vertical vibration energy through the contact
and separation of two materials. This backpack was
characterized by its structural form and high energy conversion
efficiency. Another work comes from Chandrasekhar et al.,68

who developed a smart backpack using a triboelectric
nanogenerator to collect biomechanical energy from different
human motions including walking, running, and bending.
However, those backpacks approximately adopted the contact-
separation mode of TENG with a relatively low power output,
and in particular, they all lack the capacity of labor-saving and
shock absorption.

The electromagnetic generator (EMG), as a traditional
generator, is based on electromagnetic induction and is widely
used to provide clean electricity. As reported in previous
literature,69−71 there are some works incorporating the EMG
into a backpack. However, considering their limitations of
complexity and heavy weight, we explore a method of adopting
the TENG to harvest the energy of walking and running, which
is more suitable to the ambient atmosphere with lower
frequencies.56

Human walking can be regarded as an inverted pendulum,
where the hip joint traces up an arc over the leg with a vertical
excursion of 5−7 cm.69,72,73 The conventional backpack falls
into step with the body due to their fixed connection, resulting
in an extra accelerative force on the wearer. Hereby, we
reported a load-suspended backpack for energy harvesting
based on TENG (LSBP-TENG). Two elastomers were used to
decouple the synchronous movement of the human body and
backpack. This made the labor-saving and shock absorption

Figure 2. Gait analysis and the equivalent experiment system. (a) Motion postures of the walking. The red dotted line is the trajectory of the
body’s mass center in a walking cycle. (b) Gait motion in one walking cycle under actual environment. The postures of the left leg in the red
dotted boxes refer to a whole walking cycle. (c) Double inverted pendulum as the mode of walking, approximately simplified from the lower
extremity. In this model, the mass center of the human body traces out two arcs with a vertical excursion (ΔH) and R, L, and θ are the leg
length, stride length, and span angle, respectively. (d) Relationship map of the vertical excursion with the leg length and the stride length.
(e) Scheme of the equivalent experiment system with a counterpart vehicle shouldering a load-suspended box. The system consists of five
sections including power and driving unit, force measurement unit, load application unit, position measurement unit, and electricity
generation unit.
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possible. In addition, there was a relative motion between the
load and the backpack, which directly drove the TENG.
Through the theoretical calculations and field experiments, the
LSBP-TENG realized a reduction of 28.75 % in vertical
oscillation and 21.08 % in accelerative vertical force,
respectively. Meanwhile, the peak power density was up to
58.82 W/m2 and the final energy conversion efficiency was
14.02 % under the normal walking condition. This LSBP-
TENG can not only help the wearer to carry with a heavier
load but also has the promising potential to be an energy
source for the small-scale wearable electric devices, which is
beneficial to children, field scientists, athletes, and others who
wear a backpack.

RESULTS AND DISCUSSION

Structural Design of the Load-Suspended Backpack.
The structure of this LSBP-TENG and the schematic diagrams
of its working principle are illustrated in Figure 1 and video S1.
There are two restrained conditions: locked condition and
unlocked condition. The LSBP-TENG is rigidly connected
with the human body under the locked condition, similar to

traditional backpacks. Under the unlocked condition, the
synchronous movement of the backpack and human body is
decoupled through the stretch and shrink of two embedded
elastomers. At the same time, the relative motion between the
load and the backpack drives the triboelectric nanogenerator
(TENG) for mechanical-to-electric energy conversion. Hereby,
the generated alternating current can be rectified to power
some electric apparatuses like the lower-powered lamp and the
commercial light-emitting diodes (LEDs) through a power
management unit (PMU) (Figure 1a). The insets at the right
bottom of Figure 1a are photographs of lighted diodes directly
driven by TENG.
As shown in Figure 1b, the two movers, the cushion and the

top plate, are fixed together with bolt connections, and the two
terminal ends of one elastomer are fastened to the top plate
and the ratchet mechanism through the pulley blocks,
respectively. Under the gravity of loads, the two elastomers
are stretched and the top plate moves up and down on two
linear slide rails during walking, as shown in Figure S1.
Meanwhile, the two movers synchronously move with the

top plate. Then this synchronous motion directly drives the
TENG for electricity generation. In addition, the ratchet

Figure 3. Position and force of the backpack under different driving frequencies and applied loads. (a) Driving motion provided by the linear
motor. (b) Positions of the backpack under the locked and unlocked conditions. (c) Driving forces under the locked and unlocked
conditions. (d) Different loads stored in the salver. (e) Motion amplitudes (AF2, AL2) and central positions (DF, DL) of the load and frame
with different loads. (f) Amplitudes of the driving forces with different loads. (g) Different gait cycles provided by the linear motor. (h)
Motion amplitudes (AF2, AL2) and central positions (DF, DL) of the load and frame with different gait cycles. (i) Amplitudes of the driving
forces with different gait cycles.
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mechanism is used to adjust the tension of elastomers by
clockwise or anticlockwise rotation of the ratchet heads.
There are some polyvinyl chloride (PVC) films in a square

shape on grating rows of two movers, and the nylon films are
attached to the surfaces of three copper IDT electrodes. Driven
by the top plate, the PVC films slide on the nylon films and the
alternating current is produced to power a lower-powered lamp
(Figure 1c).
The working principle of electricity generation is based on

TENG (Figure 1d), and the first and third electrodes are
connected together as electrode E1, the second and fourth
electrodes as electrode E2 from the left to right view direction.
The PVC films fully contact with the electrode E1. Since the
PVC is more triboelectrically negative than nylon,74,75 the
negative charges occur on the PVC films and the positive ones
on the nylon films with an equal amount. Meanwhile, owing to
the electrostatic induction effect, positive charges are induced
on the electrode E1 underneath while negative ones in equal
quantity on the electrode E2 (stage 1). The PVC films then
start to slide rightward and reach the middle position, and an
induced electric potential drop between electrode E1 and E2
drives electrons flowing from electrode E2 to electrode E1
through an external load, resulting in an electric equilibrium
(stage 2). Then the PVC films continuously slide rightward
and the flowing of electrons also continues. When they fully
contact with the electrode E2, there is an inverse charge
distribution against the first stage (stage 3). Finally, a reversed
current occurs in the circuit with the continuous rightward
sliding of PVC films, resulting in another electric equilibrium
similar to stage 2 (stage 4). Hence, the TENG serves as an
electron pump to drive electrons flowing back and forth
between two electrodes E1 and E2, which generates an
alternating current in the circuit.45,61,62 Notably, an inverse
process will occur if the PVC films slide leftward.
Gait Analysis and Equivalent Experimental System.

Normal walking is made up of four movement phases including
foot contacting the ground, leg supporting the body, leg being
lifted, and leg swing, and moreover, the trajectory of the mass
center of the body is a double arc in the entire walking cycle, as
shown in Figure 2a. The actual leg postures in the red boxes in
Figure 2b illustrate the motion pattern in Figure 2a.
To discover the relationship of the vertical excursion with

the stride length and the leg length, a double arc model of
walking is established, as depicted in Figure 2c. The leg length,
stride length, vertical excursion, and span angle are symbolized
by R, L, ΔH, and θ, respectively. Through the detailed
derivation in Supporting Note S1, the vertical excursion (ΔH)
is the function of leg length (R) and stride length (L).
Moreover, it increases with the stride length and the decrease
of leg length, as illustrated in Figure 2d.
When walking at a normal speed of 4.7 km/h, the vertical

excursion was calculated to be 6.98 cm and the step frequency
was 1.82 Hz (550 ms/cycle) on average (Figure S2 and Table
S1). This meets with the reported ranges of 5−7 cm and 1.58−
2.08 Hz.73 To accurately perform the single-factor experiment,
an equivalent experiment system is established, as shown in
Figure 2e and the Figure S3. The system is made up of five
units: the power and driving unit for providing precise
movement by a magneto-electric linear motor, the force
measurement unit for obtaining the driving force by a force
sensor located between the linear motor and the vehicle, the
load application unit, the position measurement unit for
observing the displacements of the load and the frame by two

laser sensors, and the electricity generation unit based on
TENG. This experiment system can ensure a precise input of
motion parameters with the linear motor. The position and
velocity of the motor are triggered and controlled by the red-
dotted cosine curves in Figure 2c. Consequently, the vertical
excursion and step frequency of walking are substituted by the
displacement and move frequency of the linear motor.

Analysis of the Motion and Force. The LSBP-TENG
mostly works in the unlocked condition. It is necessary to
discover the relationships between the labor-saving and
vibration absorption with the walking speeds and the loads.
With the obtained walking parameters and the structural
constraint of this backpack, the experimental walking
frequencies are 1.67, 1.82 and 2.00 Hz (600, 550, 500 ms/
cycle) and the three different loads are 2.75, 3.00, and 3.25 kg.
With the maximum driving displacement of 6.98 cm (the

vertical excursion) and an oscillation frequency of 1.82 Hz
(550 ms/cycle), the linear motor moves according to the
position and velocity curves in Figure 3a. Moreover, as
illustrated in the left purple part of Figure 3b, the absolute
displacement of load had the same amplitude value (AF1 =
35.111 mm) and motion phase (ΔP = 0°) as that of the frame
(AL1 = 35.111 mm) under the locked condition. But the load
obtained a smaller motion amplitude (AL2 = 25.015 mm) and a
slower motion phase (ΔP = 35.54°) than that of the frame
(AF2 = 35.111 mm) under the unlocked condition. In other
words, it was reduced by 28.75 % in the oscillation amplitude,
as shown in the right orange part of Figure 3b.
In addition, the labor saving of this LSBP-TENG is

evaluated by the difference of driving forces under the locked
and unlocked conditions. When taking a load of 3.00 kg, as
shown in Figure 3c, the driving force under the unlocked
condition had a smaller amplitude than that under the locked
condition (Funlock< Flock), and it was reduced by 21.08 % (from
30.367 to 23.967 N). Therefore, there is a labor-saving and
shock absorption in our designed backpack.
When taking different loads (Figure 3d) with a constant gait

cycle (550 ms), the motion amplitudes (AF2, AL2 in Figure 3b)
and the central position (DF, DL in Figure 3b) are collected in
Figure 3e. Obviously, the AL2 (the dotted orange line in Figure
3e) increases with the loads, while the relative motion (ΔA =
AF2 − AL2, the difference between the solid orange line and the
dotted orange line in Figure 3e) decreases with the loads.
Meanwhile, the DL (the dotted green line in Figure 3e) and the
relative distance (ΔD = DF − DL, the difference between the
solid green line and the dotted green line in Figure 3e) both
increase with the loads (minus sign only reflects the inverse
direction). In addition, as shown in Figure 3f, the force
amplitudes (Flock and Funlock in Figure 3c, Flock > Funlock) both
increase with the loads under two conditions (Figure 3f) and
the difference between them (ΔF = Flock − Funlock) remains
nearly unchanged (about 19.2 %) (Figure 3f and Figure S4).
When walking at different gait cycles (Figure 3g) with the

same load (3.0 kg), as shown in Figure 3h, the AL2 increases
with the gait cycles while the ΔA decreases with the gait cycles.
Meanwhile, the DL and ΔD nearly stay unchanged. In addition,
as shown in Figure 3i, the force amplitudes (Flock and Funlock in
Figure 3c, Flock > Funlock) both decrease with the gait cycles
under two conditions and so does the difference between them
(from 27.0 % to 5.1 %) (Figure S5).
In other words, the faster the walking speed is, the lighter

the load will feel and the greater the labor-saving will be. We
can conclude that the load and the walking speed both play an
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important role in the labor-saving and vibration absorption,
while the latter takes up a larger share.
Characteristics of the Generated Electricity. The

multilayer structure is employed to enhance the current
output. The output current theoretically increases with the
amounts of layers, while three layers (n = 3) of IDT electrodes

are finally adopted considering the carrying comfortability and
the weight.
As shown in Figure 4a,b, the counterpart vehicle in the

experiment has three layers of IDT electrodes for TENG
including the top layer (TL), the middle layer (ML), and the
bottom layer (BL). The generated electricity is extracted out

Figure 4. Electrical measurements of the electricity generation based on TENG. (a) Photograph of the counterpart vehicle in the experiment.
(b) Structure of the TENG in the counterpart vehicle. (c, d) Open-circuit voltage and short-circuit current of different layers including the
top layer (TL), middle layer (ML), and bottom layer (BL) with the TENG in the freestanding triboelectric-layer mode. (e) Rectified short-
circuit currents of one, two, and three layers of TENGs. (f) Difference between the average currents under the field experiment and
theoretical summation. The inset is the current from a single layer of TENG. (g, h) Polarities of the current and voltage alternately changing
with the time. The current or voltage beams in the dotted box occur within one motion cycle. (i, j) Two current beams and two voltage
beams with one time of polarity change. There is a charging and discharging phenomenon during the process. (k, l) Short-circuit currents
under the different loads or gait cycles.
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through three current channels. Measured by an electrometer
(Keithley 6514), as shown in Figure 4c,d, the short-circuit
currents and the open-circuit voltages are 58 μA and 1.3 kV for
the top layer, 60 μA and 1.5 kV for the middle layer, 15 μA and
1.2 kV for the bottom layer. In comparison, the differences

among the currents or voltages (Figure 4c,d) originate from
different contact status between two material films. Further-
more, the currents are more sensitive to the contact states than
the voltages owing to the larger difference among the currents
than the voltages.

Figure 5. Electric power output and mechanical-to-electric energy conversion efficiency. (a) Systematic electric circuit for the electricity
output. (b) Circuit model of a single layer of TENG, used for the following capacitor experiment. (c) Current curve on different external
resistances from one layer of TENG (n = 1) and the peak power curves under various external loads for TENGs with n = 1, 2, and 3. (d)
Charging time for a high voltage ceramic capacitor (22 nF, 3 kV/223). (e) Charging and then discharging curves of a ceramic capacitor. The
LEDs are lit with the switch on (point D) and the voltage simultaneously goes down, as shown in the enlarged view of the inset. (f)
Theoretical mode for the calculation of conversion efficiency of energy (I) and the partial structure of experiment system (II). (g) Analytical
mode (I) for obtaining the extension (ΔL) of the elastomer and the partial structure of elastomer and pulley blocks (II). The relative
movement between the load and frame is constrained between the point C and point E (ΔH). (h) Relative motion of the load to frame, equal
to the displacement of frame subtracts that of the load. (i) Single-deck IDT electrode used in the design. The partial rectangle bars of it
simultaneously participate in the process of electricity generation.
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Moreover, when simultaneously connected with different
number of layers, the open-circuit peak currents after being
rectified become 60 μA for n = 1, 65 μA for n = 2, and 75 μA
for n = 3 (Figure 4e). Moreover, the average currents from
field experiments have lower amplitudes than that from the
theoretical summation for n = 2, 3 (Figure 4f). Their difference
is on the decrease with the number of layers, implying a small
destructive interaction in the electricity output. The inset in
Figure 4f reports the output currents from different layers.
In addition, observing the curves in Figure 4c,d with a small-

scale view, the grating structure determines an alternating
electric polarity between two electrodes and the currents and
voltages are reversed three times in a gait cycle, as seen in the
boxes in Figure 4g,h.
Observing the curves in Figure 4g,h with a smaller scale

view, there are 9 positive current peaks and 13 negative ones in
a gait cycle (Figure 4i) and 5 positive voltage peaks and 6
negative ones (Figure 4j). According to the polarity change of
the left fourth voltage peak and the right fifth one in Figure 4j,
the first charging and later discharging phenomenon take place
both in the positive and negative phases, which may be
attributed to the narrow gully between two grating electrodes.
The current or voltage peaks are of difference in amount and in
impulse form before and after the change of electric polarity,
which can be related to the different intensity and times of
contacts between two material films.
Meanwhile, as seen in Figure S6, the output current in

parallel connection has a higher amplitude than that in serial,
while their output voltages are approximately the same.
Therefore, the parallel connection of the three layers of
electrodes is preferred to get a better output. Similarly, when
taking different loads, the output current of one layer almost
remains 55 μA (Figure 4k) but decreases with the gait cycles
(Figure 4l). In other words, the loads have little effect on the
electricity output, but the faster walking speeds lead to greater
electricity output.
Electric Power and Energy Conversion Efficiency. A

conversion circuit including some diodes, switches, resistors,
and capacitors is established to transform the alternating
current (AC) of TENGs into direct current (DC) (Figure 5a).
Three rectifier bridges are respectively assigned to the top layer
(TL), the middle layer (ML), and the bottom layer (BL),
conducting the full-wave rectifications. As depicted in Figure
5b, the TENG can be regarded as an energy source with high
voltage and a capacitor with high impedance in series
connection, and the generated electricity can be stored in
the capacitors and then is used to power the LEDs. This
simplified circuit is to be used for charging the following
experimental capacitors. The output current decreases with the
external loads due to the Ohmic loss (current curve in Figure
5c) and the maximum instantaneous peak powers are located
at the load resistance of 1 GΩ when n = 1, 2, and 3 (power
curves in Figure 5c).
Furthermore, the shorter time is demanded to charge a high

voltage ceramic capacitor (22 nF, 3 kV/223) for reaching the
same voltage when taking a faster driving speed (tB < tC < tD)
(Figure 5d). Meanwhile, the faster driving speed also leads to a
higher utmost voltage (VG > VF > VE) (Figure 5d). The voltage
curve of this capacitor in Figure 5d is then drawn with several
times of charging and discharging processes, which shows the
charging speed is fast at the early stage but slows down with
the time going on (Figure 5e and the inset). The charging
process starts from the point A and ends with a saturated

voltage at the point B, then the discharging is performed with
the switch on. For example, the capacitor is charged again at
point C and discharged at point D when turning the switch on;
meanwhile, the voltage immediately slashes down.
From the view of energy conversion, the mechanical-to-

electric energy conversion efficiency ηelectric is defined as the
ratio of output electric energy to the vibration energy in the
unlocked backpack. To complete this calculation, a simplified
vibration mode with single degree of freedom is proposed to
explore the relationship between the motion and energy, as
shown in Figure 5f. The upper picture (I) in Figure 5f is
simplified from part of experiment system (the lower picture
(II) in Figure 5f), as an equivalent vibration mode.
Based on the conservation law of energy, the decreased

gravitational potential energy (Egravity) of the load (m2) is
divided into three parts including the elastic potential energy
(Eelastic) stored in elastomers, the output electric energy
(Eelectric), and the wasted thermal energy (Ethermal) by the
friction effect, expressed as eq 1.

E E E Egravity elastic electric thermal= + + (1)

When the load descends a distance (ΔH) at an even speed in
the vertical direction, the extension (ΔL) of the elastomer
occurs along with the movement of the load. In order to
disclose the relationship between ΔL and ΔH, a simplified
geometric mode of the elastomer and pulley block unit is
established (Figure 5g), in which the ΔH is detailly illustrated
in the Figure S7. The upper picture (I) in Figure 5g is
simplified from the structure of elastomer and pulley blocks
(the lower picture (II) in Figure 5g), as an equivalent
theoretical mode. The ΔL is to be used for the following
calculation of the electric energy (Eelectric), and it has the same
type of motion but a slightly smaller amplitude than the ΔH, as
seen in Figure S8a. In addition, the relative motion has a lower
oscillation amplitude (Da < Ba < Aa) but an earlier motion
phase (Dp > Ap > Bp) than that of the load of the frame (Figure
5h). The load, the frame, and their relative motion have the
same gait cycle.
Owing to the small deformation effect, the elastomer with a

small extension length can be regarded as the spring with a
constant stiffness. On the basis of Hooke’s law and work
principle, the elastic potential energy can be estimated as eq 2

E K L
1
2elastic equal

2= Δ
(2)

where the stiffness of elastomer Kequal is 992.43 N/m, which is
equal to half of the maximum and minimum stiffness when the
elastomer is stretched longest and shortest (Figure S8b,c). The
ΔL is 42.72 mm as described in Supporting Note S2.
Moreover, the gravitational potential energy and electric
energy can be described as eqs 3 and 4

E M g Hgravity load= Δ (3)

E Q N I R td
t

t

electric
2

1

2∫= =
(4)

where ΔH is 42.94 mm, the masses of load with the tray and
rope Mload are 4 kg, and the acceleration of gravity g is 9.8 N/
kg. Q is Joule heating energy, N is 3, I is the instantaneous
current, and R is the load resistance of maximum output
mentioned above. The beginning time t1 and the end time t2
are 90.8 and 362.7 ms, respectively. The Eelectric is consequently
117.99 mJ based on the above parameters.
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Since there is no loss in Eelectric but the Ethermal is depleted,

the ηelectric and ρelectric are the efficiency of energy conversion

and the instantaneous power density, respectively, calculated as

eqs 5 and 6

E
E E

100electric
electric

gravity elastic
η =

−
×

(5)

E
S t

E
NSW t t( )electric

electric

electric

electric

2 1
ρ =

Δ
=

− (6)

where Selectric is the total working area simultaneously
participating in the electricity generation. The mover
simultaneously contacts with five bars of the electrode every
time (Figure 5i), resulting in that the number of working
grating rows of electrode N is 5 and the length S and width W
of each row are 147.5 and 10 mm, respectively (Figure 5i).
Consequently, the efficiency of energy conversion is 14.02 %,
and the instantaneous power density is 58.82 W/m2.
Accordingly, the LSBP-TENG is a promising energy harvester
to power some low-powered electronics by harvesting the
vibration energy during the walking.

Figure 6. Application and field experiment of the device. (a) Experimental device driven by the hands or the linear motor. The inset at the
top right corner is the photograph of a low-wattage electric watch. (b) Photograph of 210 lighted LEDs in array when being powered by
TENG. (c) Photograph of two lighted ultraviolet tubes in series. They are used for the visualization of fluorescent ink, suggesting a relatively
high voltage. (d) Photograph of two laser sensors for obtaining the absolute displacements of load and frame. The inset at the top left corner
is an image of the red laser beam shining on a finger. (e) Graph of the absolute positions of the load and frame. (f) Photograph of the
simplified prototype, and the electricity is extracted outside through three circuit pathways. (g) Experimental photographs on the treadmill
without the load. (h) Experimental photographs on the treadmill with the load. The copyright of the logo of Tsinghua University (THU)
belongs to THU. The use of the logo in this publication is permitted.
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Application and Field Experiment of the Device. As
shown in Figure 6a, the alternating current is generated by the
relative motion between the load and the frame. Then it is
rectified to power the LEDs, the electric watch, the ultraviolet
tubes, and so on. The inset in Figure 6a is a photograph of an
electric watch powered by TENG. Driven by human hands
with a little endeavor, the produced current is high enough to
simultaneously light 210 LEDs or more (Figure 6b and video
S2) and the output voltage is high enough to power two
ultraviolet tubes in series for the visualization of font “TENG”
printed with fluorescent ink on a specially designed label
(Figure 6c and video S3).
In addition, the relative motion of the load and frame is

measured by two laser sensors, as shown in Figure 6d. And the
static values of the upper and lower sensors are the original
locations of them, used to calculate the extension of elastomer.
The inset in Figure 6d is an image of a red laser beam shining
on a finger. As shown in Figure 6e, the load has a smaller
motion amplitude than that of the frame (H2 < H1) and a
slower motion phase (ΔP) as well as an initial gap spacing to
the frame (ΔH). These results demonstrated the possibility
and rationality of the structure design. As shown in Figure 6f,
the simplified backpack has the similar structure as the one in
Figure 1a, the electricity is extracted outside through three
circuit pathways, and the storage box is used to store the
applied loads.
When walking without the load, the storage box stays at the

top location without any relative movement to the frame
(Figure 6g). When walking with the load, the elastomer is
stretched and the storage box moves to the middle location
with the equal opportunity of moving up and down to generate
electricity. As shown in Figure 6h and the video S4, the LEDs
are lit when the user walks on a treadmill with the load, and the
faster walking speed will result in a brighter shining of LEDs.
On the basis of the load suspension technology and

triboelectric nanogenerator, the LSBP-TENG has three merits
including the labor-saving, shock absorption and electricity
generation. Two elastomers are applied to decouple the
synchronous motion between the load and the backpack’s
frame, resulting in relative motion for generating electricity.
The increases of loads and walking speed both contribute to
the labor-saving and shock absorption. Moreover, a fatigue test
is performed to evaluate the fatigue resistance of two materials,
as shown in Figures S9 and S10 and video S5.
However, there is still an upside potential in the perform-

ance with a better structural organization such as adopting the
longer sliding rails to elongate the relative motion in the next
generation. Meanwhile, the energy conversion efficiency can be
improved with much effort such as improving the stiffness of
elastomer for heavier loads, optimizing the structure of metal
electrodes, adopting the nanomaterial modification of two
contact materials, and taking the hybridization of electro-
magnetic mode, etc. Lastly, the problem of mass production
should be faced and solved with further efforts as well as the
challenges of the standardization of structure parts, the
simplicity of function units, custom-tailored production, and
ergonomics, etc.
Further study may focus on how to enhance its performance

with the mentioned methods above and the practical problem
of mass production. The LSBP-TENG has a wide range of
applications such as relieving the load burden on school
children, allowing rescuers to carry more and heavier
equipment, providing continuous electrical energy for wearable

and portable electrics, GPS systems, and other self-powered
health care sensors, and so on.

CONCLUSIONS
We have reported the design and working principle of a load-
suspended backpack for energy harvesting based on the
triboelectric nanogenerator (LSBP-TENG), which can realize
labor savings and oscillation absorption as well as electricity
generation. The synchronous motion between the load and the
frame of backpack is decoupled by the stretch and shrink of
two elastomers, resulting in a relative motion for generating
electricity. There is a reduction of 28.75 % in the vertical
oscillation and a 21.08 % in the labor-saving. Meanwhile, the
produced short-circuit current and open-circuit voltage of a
single layer of electrode are 60 μA and 1.5 kV, respectively,
which are high enough to light the lower-powered electronic
watch, 210 LEDs and two ultraviolet tubes. Through the
theoretical calculation, the peak power density is 58.82 W/m2

and the energy conversion efficiency is 14.02 %. In conclusion,
the LSBP-TENG can enable heavier loads than the traditional
ones under the same condition and has the promising potential
to be an energy source for the wearable and portable electrics
and sensors.

METHODS AND MATERIALS
Fabrication of the Backpack Based on TENG. The major

components of the LSBP-TENG are installed on a rectangular acrylic
plate of 420 mm in length, 300 mm in width, and 5 mm in thickness,
which is fabricated by a laser cutter (version CM-1309, G.U. Eagle
America, Inc., USA). There are several through holes made by laser
boring on the bottom plate, and they are used for the fixation of
components with bolts. Two commonly used linear sliding rails and
blocks in the same type are symmetrically fixed on two sides of the
bottom plate, and the sliding rail has a length of 128 mm and an
install height of 35 mm to the surface of the bottom plate. There are
three layers of electrode slices, one of which is on the bottom plate,
the other two are distributed on two sides of the middle plate. The
middle plate is fixed on the bottom plate with four compression
springs and four long bolts.

The electrode slice is made as follows: first, a sinuous groove is
sculptured on a rectangle acrylic plate of 232 × 185 × 2 mm with four
prominent ears for fixation; second, a rectangle copper film of 0.065
mm in thickness is covered on the acrylic plate; third, the copper film
is cut away to form two groups of separate grating copper electrode;
finally, the nylon film of 0.025 mm in thickness is adhered onto the
copper electrode. The two movers with grating rows in the array are
made by the fused deposition modeling (FDM) of 3D printing with
acrylonitrile butadiene styrene (ABS) material on a printer (version
3DP-25-4F, Tiertime, Inc., China). Located among the electrode
slices, the two movers are fixed together to synchronously move up
and down with the top plate. Most of the components are fabricated
by 3D printing with ABS materials.

Measurement of Driving Force and Absolute Displacement.
The driving force in the experiment system is equivalently regarded as
the force on the shoulders of wearers, offered by a linear motor
(version P01-37 × 120-C/C1100, LinMot, Inc., USA). A force
measurement system (version AD2016SC2, AutoDA, Inc., China)
with a sensor in “Z” shape is employed, which can display in real time
the fluctuation of force on a LCD screen. The force sensor of 70 × 60
× 10 mm is suspended between the linear motor and the vehicle
through two connectors. Meanwhile, the locations of the load and the
frame are measured by two laser sensors (version HG-C1400,
Panasonic, Inc., Japan). And a data acquisition collector is used for
real-timely monitoring and recording the motion datum.

Measurement of the Output Electricity. The polarities of the
short-circuit current and open-circuit voltage alternately change with
time, and they are measured by a Keithley 6514 system electrometer
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(Keithley 6514, impedance >200 TΩ, Keithley, Inc., USA). Moreover,
a high voltage ceramic capacitor (22 nF, 3 kV/223) is charged to be
saturated by the TENG and is then discharged by five LEDs in series.
During this process, the Keithley 6514 system electrometer is used to
real-timely obtain the voltage changes between two terminals of
capacitors with a high-voltage probe (version HVP-40, 1/1000,
Pintech, Inc., China). Finally, the still-shot images of some
commercial LEDs and two lighted ultraviolet tubes both come from
a digital camera (version ILCE-7M2, Sony, Inc., Japan).
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